

PaparaDzIY

Pascal Brisset and Antoine Drouin

ENAC-CENA Toulouse, France

September 15, 2004

Project Paparazzi

Quick and Dirty UAV

- Hobby
- Low budget
- Two persons
- Two years
- JMD'03, EMAV'04 flight competitions

Learned lessons?

It Yourself: Guidelines and tools for amateurs.

Outline

- IP was, IP w

- Objectives and Motivations
- Components
 - Aircraft Model
 - Autonomous Flight
 - Simulation and Flight Tests
- Methodology
 - Safety
 - COTS
- Conclusion

Goals

- Autonomous flight
- Safety
- Low cost
- Low weight
- Open project

www.nongnu.org/paparazzi

Motivations

- To understand and learn
 - Electronics (sensors, EMI, RF,...)
 - Automatics (data fusion, control loops)
 - Software (airborne systems, datalink, HMI,...)
 - Flight mechanics and aerodynamics
- To have fun
- To take part in flight competitions

Outline

1000

- Objectives and Motivations
- Components
 - Aircraft Model
 - Autonomous Flight
 - Simulation and Flight Tests
- Methodology
 - Safety
 - COTS
- Conclusion

Model Aeronautics

Not well described in books. Based on experience

- Assembly: nothing to reinvent capitalize on model aircraft experience.
- Pilot: good skills for tricky situations.

Airframe

First goal: To fly

Ex: Twinstar Multiplex

- "Ready to fly"
- Easy to operate
 - Electric
 - Hand launch
 - Heavy duty

Fly well, fly often

Safe Manual Control

- PPM/PCM decoding
- Actuators command
- No radio-command programming
- Robust minimal code

Paparazzi solution:

- Automatic code generation
- 4ko

Downlink

Monitoring of the flight parameters is required:

- Real time
- Post flight analysis

Paparazzi solution:

- Modems and audio channel of video camera transmitter
- Generic protocol

Sensors

- Attitude : differential infrared thermometer
 - absolute data
 - no drift computationally light

- Position
- Course
- Altitude
- Speed

1st step: Automatic Flight

Control from the ground station.

Requires only:

Stabilizer

• GPS receiver

Computer-RC link

Pros: Simplicity, software environment

Cons: Latency, critical up and downlink, non autonomous

2nd step: Autonomous Flight

Airborne controllers: stabilization and navigation

- Attitude
- Heading
- Waypoint
- Track
- Mission

Simulation

Basic flight model

- Debug and non-regression test
- Help to adjust navigation algorithms
- Difficult to be realistic for low level controllers tuning

Paparazzi solution: "Hardware in the loop" simulator

Flight Tests

- IF was

- Prepare a program
- Follow the program as much as possible
- Monitor the flight
- Analyze recorded data
- Archive them

Post flight data analysis

- Replay
- Detect hidden failures
- Help future simulation

Outline

- Track

- Objectives and Motivations
- Components
 - Aircraft Model
 - Autonomous Flight
 - Simulation and Flight Tests
- Methodology
 - Safety
 - COTS
- Conclusion

Safety

- Design
 - Segregate critical code
 - Implement fail safe modes
 - * Automatic motor cut upon ground proximity
 - * Basic "back home" navigation mode
- Operation
 - Be paranoid (if it may fail, it will fail)
 - Use check lists
 - Respect model aircraft rules

Extreme Programming

www.extremeprogramming.org : a software methodology
for "risky projects with dynamic requirements"

Some rules:

- Refactor whenever and wherever possible
- Unit tests
- Integrate often
- Make frequent small releases
- All production code is pair programmed

Use "open" COTS

17-20-

Need for a full control of the components.

- RC receiver:
 - Difficult to tune and build (HF part)
 - Piggy-backed a commercial unit
- FMA stabilizer:
 - Keep the infrared sensor
 - Dump the controller

Open Software

Natural answer: the Free Software solution (FSF, GNU)

- Understanding and fixing
- Active support
- Expanding, adapting

Examples: Linux, Gcc, Autopilot, Rtty, FlightGear, Ivy, Zinc,...

Paparazzi Control Station

Real UAV is to expensive to play!

Do it yourself with Paparazzi

- Request for support, documentation, features
- Find bugs!

First users

- Fondtech: Minimal cost landmine survey
- Adelaide University: Computer vision
- ENAC: Teaching

http://www.nongnu.org/paparazzi

By the way: nothing new for terrorists

Recurrent question on open project UAV forums

- Commercially available elsewhere
- Not a turnkey system
- High complexity, low payload, small range

Why would they bother building their own?

